Streaming Graph ETL
The Problem
Most ETL tools use the batch processing paradigm to find high-value patterns in large volumes of data. Whether the specific business application is fraud detection, cyber security, network observability, e-commerce or ad targeting, batch processing translates into delay. Even if you are processing data in small batches, you are missing opportunities to react to events as they happen and shape outcomes in ways beneficial to your business.
A great example is insider trading. The cost of detecting someone who is about to execute an insider trade is much less than the cost of trying to unwind that trade later when batch processing picks it up. Even if the batch process runs every five minutes, that just means you’ll find them sooner, not stop them. Ultimately stream vs. batch will result in the costly reversal of transactions, not stopping them in real-time.
The Solution
Streaming ETL using Quine means not just knowing but acting on events as they occur. Use Quine’s ingest queries to materialize event data as a graph, with a graph’s ability to express and query for complex relationships between seemingly unrelated data. Then use Quine’s standing queries to monitor for key patterns (e.g. indicating a fraudulent transaction or cyber attack is underway) and take action when those patterns emerge.
Quine’s graph ETL also makes it straightforward to process categorical data — everything from email addresses and model numbers to IP addresses and process IDs — that other systems ignore or try to encode.
Use Quine Enterprise to scale your graph ETL to millions of events per second.
Key Value Take Away
- Use standing queries to detect patterns as they occur and take action
- Join data from multiple sources as scale
- Resolve entities across sources
- Mitigate out-of-order data arrival
- De-duplicate data
- Generate new events from data as it streams, in real-time
- Integrates with existing Apache Kafka, AWS Kinesis, data lake, and API event sources.
Use Cases
-
Real-time Blockchain Fraud Detection
The Problem Real-time linking of transactions, accounts, wallets, and blocks within and across blockchains is not possible with current solutions. Instead, the user must either rely on batch…
-
Authentication Fraud
The Problem Metered attacks that generate low volume log-in attempts, from diverse IPs and across extended time frames, are designed to avoid the “3 strikes in 24 hours”…
-
Financial Fraud Detection
The Problem Financial fraud detection requires monitoring billions of transactions, devices and users in real-time for suspect behaviors without false positives that alienate customers when service is denied…
Want to read more news and other posts? Visit the resource center for all things thatDot.