
thatdot.com

At their core, both domains bring a long list of challenges
that are due to the complex interplay of fundamental
mathematical or physical constraints that will inevitably
surface in any system that stores data and has more than
one processor.

Researchers and developers spend entire careers
developing novel ways to overcome the constraints and
tradeoffs of a single aspect of these systems. Issues like
consensus, concurrency, transactional logic, clustering
behavior, fault tolerance, scalability, balancing read and
write performance tradeoffs, and temporal ordering are all
subjects of research and innovation.

However, when the system in question is primarily
concerned with processing events as quickly as possible,
one dimension in particular takes on outsized importance:
time.

Streaming Graph
Data Processing

Origins and Challenges
Stream processing and event-driven microservices are complicated! They’re
complicated because they combine the hardest problems from the database domain
with the hardest problems from the distributed systems domain.

Designed to find complex
patterns within high volume
data streams composed of
heterogeneous feeds without
resort to time windows.

Quine is an open source
streaming graph software
project sponsored by
thatDot.
Learn more at thatdot.com.

https://www.thatdot.com/

thatdot.com

Processing vast amounts of event data, especially when the
system is composed of many microservices that rely on a
strict order of operations, presents particular challenges. How
does such a system handle out-of-order data? What if data
arrives hours, days, or months after it was generated? And
how will such a system know when to execute a query? When
will the system be guaranteed to have all the data and in
proper order?

Consider for instance the previously mentioned problem of
when to query data. Systems today must continuously query,
or poll. Polling consumes system resources and increases
query latency, both of which impact not just the process or
service in operation at the moment, but have the knock on
effect of delaying when the next service can guarantee that it
has the necessary data.

Time and Distributed Systems

What if we could eliminate many of the drawbacks of event
processing and database systems and build a system from the
ground up which confronts each of these fundamental
challenges from a holistic perspective and with the goals of
modern applications in mind? What if we could build a system
to deliver high-throughput, low-latency reads and writes over
unbounded data? One that is optimized to handle the
constraints of distributed systems and databases under high
concurrency workloads?

After seven years of research and development, and with
major funding from DARPA, this is exactly what the team at
thatDot has done. We call this system Quine. This open source
system is at the heart of all thatDot technology.

2
thatdot.com

A New Approach

Streaming
Graph for
Real-Time
Applications
Quine is the open-source streaming
graph and computation platform
developed by the engineers at
thatDot. It bridges the worlds of
distributed event stream processing
engines and graph databases.

Quine is designed to find complex patterns within high
volume data streams composed of heterogeneous feeds
without resort to time windows. It eliminates the headaches
involved with building and operating event-driven
microservices that enable real-time applications.

Three design choices define Quine, setting it apart from all
event stream processing systems: a graph-structured data
model, an asynchronous actor-based graph computational
model, and standing queries, which are Quine’s solution to
the challenges time presents in distributed systems, and are
similar to continuous queries in other event stream
processors.

1

2

3

Graph-Structured Data Model

Actor-Based Graph
Computational Model

Standing Queries

Core Design Choices and Their Implications

DOG

WANTS

BONE

However, unlike relational databases, these relationships
are essentially pre-computed joins. They make it easy and
extremely efficient to use the relationships in data—which
is how Quine is able to find complex patterns across both
high-volume heterogeneous data streams and large
historical data sets in real time.

Quine and thatDot Streaming Graph

In general, Quine OSS is for single node use cases which do
not require commercial support. thatDot Streaming Graph,
has Quine at it’s heart, but is useful for larger use cases
that require a distributed cluster for production execution.
Newer versions of thatDot Streaming Graph, also have
expanded capacity for enterprise use cases with support
for separating different datasets into Namespaces.

Graph is the Universal Data Structure

Quine uses a property graph model to store and query real-
time data. In this regard, it functions similarly to graph
databases. It even uses the most common graph query
language, Cypher, to work with the data. In a graph model,
data is represented as nodes connected to each other by
edges. Nodes hold key-value pairs of “properties.” The
edges have a direction and a label, and connect exactly two
nodes.

Graph data structures represent data and its relationships in
a way strikingly similar to how humans often think and talk
about data. The node-edge-node pattern in a graph
corresponds directly to the subject-predicate-object pattern
common to languages like English. This makes graphs both
powerful and easy to understand. When visualized, a graph
becomes endlessly intriguing.

Quine’s property graph structure puts relationships at the
same level as the data values themselves by encoding these
relationships as edges. To discover relationships, one need
only traverse a node’s edges. Traversing the edge of a node
to its neighbor is analogous to computing a join across tables
in a relational data model.

1

3
thatdot.com

2

MESSAGE HANDLING

In Quine, the graph data model is paired with a graph
computational model. Computation is implemented as a
native graph interpreter which occurs directly on the data.
Ingested data, queries, or other instructions are inserted into
the graph and propagate through the network of nodes and
edges to compute the appropriate answer or trigger an
action. The result is a fast and efficient process for highly
parallel and fully asynchronous computation that executes
inside the graph.

Computation in Quine is built on the Actor Model originally
using Akka, but later updated to its open source successor,
Pekko. First described by Carl Hewitt* in 1973, an actor is a
lightweight, single-threaded process that encapsulates state
and communicates with the outside world only through
message passing. An actor receives messages in its mailbox
and performs the corresponding small-scale computation.

A Graph Model for Asynchronous Computation:
the Actor Model

Actors are scheduled for computation concurrently with
other actors. This makes the overall system computation
highly parallel. Under heavy load, the scheduler utilizes all
available CPU cores automatically, scheduling multiple
separate actors to process their messages concurrently.
Actor scheduling is done on a highly-efficient “work-stealing”
fork-join thread pool, running efficiently on a small machine,
or taking advantage of massive compute resources available
on large machines.

This also means that Streaming Graph distributed use cases
make efficient use of each machine in a cluster, keeping
cluster sizes reasonable, even for jobs with intense
computational demands. The net result of these is a fast,
efficient, reactive system that provides very high throughput
for complex event processing.

Provides universal, event-driven, incremental
computation

Implements complex protocols

Mixed in to nodes

Easily extended

Built on the battle-tested Pekko OSS

4
thatdot.com

* https://arxiv.org/vc/arxiv/papers/1008/1008.1459v8.pdf

https://arxiv.org/vc/arxiv/papers/1008/1008.1459v8.pdf

5
thatdot.com

Out of Order and Late Arriving Data With No
Time Windows
Quine’s standing query capability allows it to easily handle
out-of-order data and late-arriving data. A standing query is
issued, ready to complete the sought-after pattern with no
consideration of data arrival order, even if delayed by hours
or months. Because Quine lets the user focus on the
structure of the data instead of the order of events—even if
data arrives entirely backwards—Quine will provide the
correct answers immediately when all the relevant data has
arrived.

Instead of needing to continuously poll to determine if data
has arrived, as you must with other event processing
systems, Quine’s state is continuously updated and each
match triggers the appropriate action automatically. Because
data is stored on disk, retrieved and managed automatically,
new data can easily be combined transparently with very old
data. Because results stream out immediately when a match
is found, standing queries eliminate the need to keep
checking whether the data is complete—eliminating all the
operational complexity and wasted resource overhead that
entails. Instead you can focus attention on the business
problems that led you to implement an event-driven
architecture in the first place.

MULTIPLE DATA
STREAMS

DATA POPULATES
THE GRAPH

LATE ARRIVING OR
OUT OF ORDER DATA

IS FIT INTO THE RIGHT
PLACE IN THE GRAPH

A STANDING QUERY
DETECTS AND IMMEDIATELY

COMPLETES QUERY

MATCH
IMMEDIATELY

RESULTS ARE DELIVERED
OR ACTIONS

TRIGGERED BY MATCH

ANSWERS
& ACTIONS

A

C
A C

B

A C

{ }
B

Time Time

Standing Queries Change Everything3

Standing queries are the central innovation at the heart of
Quine. Built on the pillars of the graph data and
computational models, standing queries in Quine eliminate
the time-based challenges otherwise inherent to distributed
systems. But the implications of what they mean for building
complex systems with Quine reach far beyond that.

Standing queries live inside the graph and automatically
propagate their incremental results computed from both
historical data and incoming streaming data. Once matches
are found, standing queries trigger actions using those
results (e.g. report results, execute code, transform other
data in the graph, publish data to another source).

This eliminates the need for constant polling to discover new
changes in the data. Because standing queries persist in the
graph, incrementally updating partial results as new data
arrives, you are not just querying the past and present state,
you are querying the future for any matches from data yet to
arrive.

A

Quine’s graph-based data and computational model also
make it possible to achieve both high read and high write
performance.

High read performance is achieved through an approach we
call semantic caching. The graph data structure, specifically
the edges between nodes, provides what are effectively pre-
computed joins for the entire data set, but they are
computed incrementally at the moment when it is most
efficient. With the connections in the data easily accessible,
they become the ideal clue to what other data is worth
keeping warm in the cache.

Semantic caching is another key to Quine’s high-throughput
and low-latency computation. With related data kept in
memory, the result is a remarkably high cache hit rate and
great performance.

Quine’s actor-based compute model is also key to achieving
high write throughput. Since each node is an actor and has
the ability to do arbitrary computation, Quine can efficiently
test whether updates or writes actually need to be stored on
disk. If they do, Quine writes only the minimum possible
delta. This operation is then combined with a write-optimized
data store like RocksDB or Cassandra to deliver fast and
efficient write operations. Clickhouse is also among the
options in the more recent versions.

Quine’s high-
throughput and low-
latency computation

is made possible by
the unified graph
representation of

both data and
computation.

Performance and
Flexibility
Quine’s architecture gives rise to some novel
and quite powerful capabilities that directly
address the tradeoffs and limitations of
existing distributed stream processing
systems.

High Read and Write
Performance

Balance: Schema-less Flexibility
with Schema-full Data Structure
Quine’s unified graph provides the ideal sweet spot between flexibility and structure
in the schema. You do not always have to know the shape of all data before the first
write, and yet can still query and compute on the data efficiently and reliably.

6
thatdot.com

thatdot.com

thatdot.com

In 2014, Ryan Wright, founder and CEO of thatDot, after he decided that he’d rebuilt the same event processing micro service
platform one too many times, invented Quine.

In 2015, Wright lead a team of researchers and developers on the DARPA Transparent Computing program to create new
capabilities for finding and stopping Advanced Persistent Threats (APTs). Using a graph data structure made joining and
processing categorical data from multiple sources world’s easier, faster, and more efficient.

In 2022, thatDot announced an investment from Crowdstrike’s Falcon Fund and was founded as a commercial company.
thatDot is a Portland, Oregon-based streaming event processing company. thatDot technology analyzes infinite datasets in
real-time. Built on our native streaming graph technology, our commercial applications, Streaming Graph and Novelty, are ideal
for cybersecurity, anomaly detection, fraud prevention, and a variety of other applications.

Real-Time Tag Propogation
Across a Block Chain

CDN Cache Efficiency
By Segment

Kubernetes Event
Observability

The Ethereum blockchain is ingested
live from the Web, transactions are
modeled in the Quine streaming
graph and a Quine Standing Query
propagates a “dirty money” tag in
real-time across the graph to trace
money laundering.

Ingest CDN logs and calculate cache
hit rate in real time by segments:
Country, State, PoP, ASN to generate
alerts or dashboards.

Ingest Kube events and calculate
state by component, pod, & service
to generate alerts and trace root
causes.

https://quine.io/recipes.html

About thatDot

thatdot.com

Try thatDot for yourself

Visit thatdot.com for more information.
Download a FREE TRIAL at thatdot.com/free-trial

For open source information, visit quine.io.
Join the Quine Discord community https://discord.gg/cPHVSmU5jB
Check out Github https://github.com/thatdot/quine

https://quine.io/recipes.html
https://www.thatdot.com/
https://www.thatdot.com/free-trial/
https://quine.io/
https://discord.com/invite/cPHVSmU5jB
https://github.com/thatdot/quine

